题目介绍:
Matrix Power Series
Time Limit: 3000MS | Memory Limit: 131072K | |
Total Submissions: 25225 | Accepted: 10427 |
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 40 11 1
Sample Output
1 22 3
#include#include #include #include using namespace std;const int MAX_N = 220;int E[MAX_N][MAX_N];int M;class Mat {public: Mat(int N, int N2) { vc.resize(N); for (int i = 0; i < N; i++) { vc[i].resize(N2); } } vector & operator[](int idx) { return vc[idx]; } int size() { return vc.size(); }private: vector > vc;};void multiply(Mat& CP, Mat& B, Mat& D) { memset(E, 0, sizeof(E)); for (int i = 0; i < B.size(); i++) { for (int j = 0; j < B[0].size(); j++) { for (int k = 0; k < D.size(); k++) { // printf("prev, %d %d %d %d\n", E[i][j], B[i][k], D[k][j], B[i][k] * D[k][j]); E[i][j] = (E[i][j] + B[i][k] * (D[k][j] % M)) % M; // printf("last, %d %d %d %d\n", E[i][j], B[i][k], D[k][j], B[i][k] * D[k][j]); } } } for (int i = 0; i < B.size(); i++) { for (int j = 0; j < D[0].size(); j++) { CP[i][j] = E[i][j]; } }}void debug(Mat& E, int N, int C) { for (int i = 0; i < N; i++) { for (int j = 0; j < C; j++) { printf("%d ", E[i][j]); } printf("\n"); } printf("\n");}void mpow(Mat& B, int k) { int N = B.size(); if (N == 0) { return; } int C = B[0].size(); Mat cp(N, C); for (int i = 0; i < N; i++) { cp[i][i] = 1; } while (k) { if (k & 1) { // cp = cp * B^(2^k) multiply(cp, cp, B); } multiply(B, B, B); k = k >> 1; } for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { B[i][j] = cp[i][j]; } }}int main() { int n, k; int A[MAX_N][MAX_N]; while (cin >> n >> k >> M) { Mat B(n * 2, n * 2); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { cin >> A[i][j]; } } // copy Mat to be: // | A | 0 | // | I | I | // for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { B[i][j] = A[i][j]; } B[n + i][i] = B[n + i][n + i] = 1; } mpow(B, k + 1); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { int a = B[n + i][j] % M; if (i == j) a = (a + M - 1) % M; printf("%d%c", a, j == n - 1 ? '\n' : ' '); } } } return 0;}